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Summary 

With the help of quasilinear irreversible thermodynamics, a relation between the shear viscosity and the primary 
normal-stress coefficient can be derived. A similar relation has been proposed by Bird, Hassager and AbdeI-Khalik 
[1] for the first term of the Goddard expansion [2]. Here, we show that by incorporating the Carreau viscosity 
equation [3] with the irreversible thermodynamics the primary normal-stress coefficient can be expressed in 
closed form. 

1. Introduction 

The knowledge of material functions other than the non-Newtonian viscosity (7) is 
necessary for the understanding and the optimal design of process equipment, involving 
the transport of viscoelastic materials such as polymer solutions and melts. The viscosity 
function can be measured by a variety of relatively inexpensive methods, but the 
measurements of normal-stress differences are currently much more involved. Conse- 
quently, it is very useful to predict interrelations amongst a variety of material functions. 
A simple relation between the primary normal-stress coefficient (tkl) and the viscosity (,/) 
derived via the theory of fluctuations is discussed in this contribution and represents a 
powerful example of the prediction of one material function (tpl) in terms of a more easily 
measured quantity (7/). 

2. Theory 

Onsager's linear thermodynamics of irreversible processes [4] has been generalized by 
Vodak and Stastna [5,6]. The quasilinear theory incorporating the theory of relaxation 
phenomena is based on the following hypotheses [6]: 

(a) The relation between fluxes (J~) and forces (X,) is given by the following equations: 

A d J/ k~__ ( ) k * d X k ~  
Ji + i d t  = -1  Lik Xk + k d l  ]" (1)  
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(b) The phenomenological coefficients satisfy the Onsager relations [4] 

Lik = Lk i ,  (2) 

i.e. they are symmetric. 
(c) The entropy production o, the fluxes J~ and the forces X i are related through 

o = ~ Ji X, >~ O. (3) 
i=1 

According to the nature of the fluxes and the thermodynamic forces, irreversible processes 
can be divided into three groups: (i) vector processes, associated with the transport of 
energy and matter, (ii) tensor processes, associated with the transport of momentum, and 
(iii) scalar processes, describing volume changes. Material functions associated with these 
three types are: thermal conductivity, shear viscosity and bulk viscosity, respectively [4]. 

Only the tensor process is considered in this contribution. For an isotropic medium, the 
relations between forces and fluxes can be simplified if we take into account that, 
according to Curie's theorem [4], fluxes and thermodynamic forces of different tensor 
dimensions cannot be connected. As a result of assumptions (1-3) the quasilinear theory 
is restricted to slow processes. Using Eqn. (3) to represent the entropy production, in 
terms of linear contributions only, one avoids the problems raised by Woods [8] with 
respect to nonlinear irreversible processes violating the Clausius-Duhem inequality. 

Equation (1) can be written in co-rotational form using the Jauman time derivative and 
solved with the help of the Laplace-Jauman transform technique developed by Goddard 
and Miller [7]. 

Another procedure, using the Fourier transform technique, can be applied. Such a 
technique is used in statistical physics to study fluctuations [9]. Applying the Fourier 
transform to Eqn. (1) yields the following relation between the fluxes and thermodynamic 
forces: 

if5 J ,( t )  = L , , ( s ) X k ( t - s l d s .  (4) 
k ~ l  oo 

L~k(s ) are coefficients obtained from Eqn. (1) with the help of the Fourier transform, i.e., 

L,~(s)  = h(s)L, , .  X, - X~ e_,./x ' (5) 

where h(s)  is the unit step function. 
As noted earlier, we will consider only tensor processes. Then, one can write 

J(t)= fSo L(s)X(t-s)ds, (6) 

and this equation describes the response of the system to an external mechanical 
perturbation (the quantities J and X are now second-order tensors). If the thermodynamic 
force X can be represented by its Fourier integral, i.e., 

1 oo 
X ( t  - s )  = ff x l  ei*tt-S)d'i, (7) 
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where ¢[ X] is the Fourier transform of X, then one obtains the following linear relation 

J ( t )  = a(5')  X ( t ) .  (8) 

Here the notations 5' is used to be consistent with the rheological literature [1,2]. 
The function a, which might be called the generalized response function, is computed 

from 

a(5') =fo°°L(s)  e- i 'Ms (9) 

where we have used the causality principle. The function a is a complex function of the 
real variable ?, i.e. a(5') = a'(5') + ia"(5') and from the definition of a (? )  it follows that: i) 
a ( - 5 ' )  = a---~, ii) a ' ( -5 ' )  = a'(5') and iii) a " ( - 5 ' ) =  - a"(5'). One can apply the complex 
Eqn. (8) to the steady shear flow of an incompressible viscoelastic fluid. In such a case 
Eqn. (8) must be time averaged, i.e. ( J ( t ) ) =  a ( 5 ' ) ( X ( t ) )  where ( ) represents a time 
average. In this case ( J ( t ) )  will represent the extra stress tensor and since the constitutive 
equation must be materially invariant the "deformation function" ( X )  is an isotropic 
function of the first two Rivlin-Ericksen tensors [10]. A generalized second-order fluid 
model can be obtained for the following "complex deformation function": 

( X )  = aA~ + flA 2 - i5'A 1 (10) 

where A 1 and A 2 a r e  the first two Rivlin-Ericksen tensors, a and fl are real constants and i 
is the imaginary unit. A real constitutive equation can now be written as 

z =  Re[ a(  5' )(  aA21 + flA2 - is'A,) ] 

= a ' (5 ' ) [aA~ + flA2] + 5'a"(5')A, .  (11) 

Evaluating Eqn. (11) for a steady shear-flow process one realises that the shear viscosity 
,/(5') is equal to 5'a"(5'): 

) /(?)  -- 5'a"(5'). (12) 

The primary normal-stress coefficient tk i (5')( = (1"1 ~ - "1"22 )//5'  2 ) and the secondary normal- 
stress coefficient tk2(5')(= (~22- "33)/5' 2) are related to a'(5') as follows: 

~,(5') = -2f la ' (5 ' ) ,  ~2(5') = (a  + 2fl)a '(5') .  (13) 

It is now accepted that ffl is positive and tk2 (of smaller magnitude then ~kl) is negative. 
The real and imaginary parts of the generalized response a(5') are related through the 
Kramers-Kronig relations [4] 

a " ( 5 ' ) = -  P _ x - ~  " 

a'(?)=l P fSoo a'(x) x : T  dx  

(14) 
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where P refers to the principal value of the integral. Since the imaginary part of the 
function a(~,) is an odd function one can write 

a'('~ ) = 2  Pfo °° xa''( x ) ~ ?-~dx. (15) 

With the help of (12) and (13) this equation can be written as the following relation 
between the viscometric functions ~b1(5, ) and */('i'): 

~ a ( .~ ) f 4 fl P fo °° 71( x ) . -~_x2 dx (16) 

Which can be written in the form given by Bird et al. [1], 

_ 4_B f~ ,7(  ,_)- ,7(x)  
~ k , ( ? ) -  ~r Jo x2_--~- ~ dx. (17) 

This relation has been derived in [1] with the help of the Goddard expansion [2]. 

3.  E x a m p l e  

Let us assume that the viscosity function can be fitted by the Carreau viscosity equation 
[3] 

- r/oo 1 

7/° - ~1~ (1 + (h'•)2) N' 
lv~ (0, ½) (18) 

where )~' is a time constant, 7/0 and 7/oo are the zero and infinite shear-rate viscosities, 
respectively. This equation, which is based on molecular network theories, is known to fit 
experimental data very well and can be used for smoothly changing flows of polymer 
melts and polymer solutions as well [1]. 

Substituting the viscosity 71 given by Eqn. (18) into relation (17) one obtains the 
following equality: 

¢1(x/x ')  f ~ ( 1 +  x 2 ) - " - ( 1 +  t2) -jr 
,//  d t  (19) 

4fl)~'(T/o - ~/o¢) =Jo -~---x2 

where x = ;~'5'. 
Denoting the integrand in Eqn. (19) by f (x ,  t) one can see that 

• of  - N ( ~ +  1)x 
tlim ~--~x (x, t )= (1 +x2) ~+2 (20) 

and Of/Ox is bounded and continuous for all x ~ (0, A), t ~< 2A, (A > 0). For t > 2A, 
there exists an integrable majorant, [Of/Ox] <~ ct -3, and the integral in Eqn. (19) can be 
differentiated with respect to the parameter x. 



Let us further denote 

F(x) =fo °° (1 + x2) -Nt2_x 2-(1 +/z ) -U  

Since 

OxOf (x' t )=~t  (t' x)' 

one can write 

dF  r ~ O f ,  1 - ( 1 + x 2 )  -u 
dx =Jo "~tt, x)dt = - x2 

Integration of this equation yields 

F(O) - F(x) = - 1 - (1 + x 2 ) - "  
X 
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dt-- fo°°f(x, t)dt. (21) 

(22) 

(23) 

+ 2N foX(1 + uZ)-(N+l)du. (24) 

The last term of this equation can be transformed into the incomplete beta function 
Bx(v, ~) [11]. The function F is then given by the following relation: 

F(O)-F( lf~_x ) = 1 - ( 1 - x ) N ~ / 1 - x + N B x ( ½ , N + ½ ) .  (25) & 

The value of F(0) can be computed by substitution of t = s l/z followed by integration by 
parts: 

= f f  1 - (1  + t2)-Ndt = 1 f f  I - (1  + s) -~ F(O) t 2 "2 v s3/2 ds 

= Nfo**S-l/2(1 + s) -~- lds  = NB(5, N + 5) (26) 

where B(5, N + 5) is the beta function [11]. 
Substituting Eqn. (26) into Eqn. (25) one obtains 

F( l ~ / ~ X x ) . l - ( l - x ) ~ V ~ / X - x  

+N[B(5 ,  N+ 5)-Bx(5,  N+ 5)]- (27) 

Finally, the primary normal stress coefficient qq is given by the following expression: 

~k,(~/) = 4flh'(~l°- 71~) ( (h '~¢)- ' [1-  (1 + (h,~)z)-N] + 

+N[B(5, N + 5 ) - B , ( 5 , N  +5)]) (28) 

where z = (~"i,)2/(1 + (~k"~)2). 
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Let us note that the factor fl cannot be obtained from the Goddard expansion [2]; fl 
has been added as an empirical factor by Bird et al. [1] since Eqn. (17) (without fl) 
predicts ~kl-values lower than the experimentally measured quantities. Limitations of the 
presented relation between ~kl(?) and */(5') are due to the assumptions (1-3) of the 
quasilinear thermodynamic theory. These limitations do not violate the Clausius-Duhem 
inequality. 
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